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Surface waves can be recorded in two kinds of ways, either with a fixed (Eulerian) 
probe or with a free-floating (Lagrangian) buoy. In  steep waves, the differences 
between corresponding properties can be very marked. 

By a simple physical model and by accurate calculation it is shown that the 
Lagrangian wave period may differ from the Eulerian wave period by as much as 
38 %. The Lagrangian mean level is also higher than the Eulerian mean, leading to 
possible discrepancies in remote sensing of the ocean from satellites. 

Surface accelerations are of interest in relation to the incidence of breaking waves, 
and for interactions between short (gravity or capillary) waves and longer gravity 
waves. Eulerian accelerations tend to be very non-sinusoidal, with large downwards 
peaks, sometimes exceeding - g  in magnitude, near to sharp wave crests. Lagrangian 
accelerations are much smoother ; for uniform gravity waves they lie between 
-0.3889 and +0.315g. These values are verified by laboratory experiments. In 
wind-generated waves the limits are probably wider. 

In  progressive gravity waves in deep water the horizontal accelerations generally 
exceed the vertical accelerations. In steep waves, the subsurface accelerations can 
slightly exceed those a t  the free surface. 

A novel application is made to the rolling motion of ships. In very steep, 
irrotational waves it is shown theoretically that the flow near the wave crest can lead 
to the rotation of the hull through angles up to 120' by a single wave, even if the 
wave is not breaking. This is confirmed by simple experiments. The efficiency of the 
keel appears to promote capsizing. 

1. Introduction 
A basic problem in fluid dynamics, to which G. I. Taylor made at least one notable 

contribution (1921), is the relationship between the Eulerian and the Lagrangian 
representations of the fluid motion. For sea waves, the two different representations 
are exemplified by two different types of observation. In  the first, measurements of 
surface elevation are made at  a fixed location in the horizontal plane, for example, 
with a vertical wire gauge or light beam. This type we may call Eulerian. In the 
second, an accelerometer is mounted vertically in a free-floating buoy which follows 
more or less the orbital motion of the surface particles. After two time integrations, 
this gives a Lagrangian measurement of the surface elevation. 

For low waves, and to a first approximation in the surface slope, the two types 
of observation give nearly the same answer ; the records obtained have often been 
assumed equivalent. For steep waves, however, the results can be quite different, as 
we shall show. 

The first effect, discussed in 52 below, concerns the apparent period of the waves. 
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FIGURE 1 .  Measurement of surface waves with a fixed staff A,  and with a free-floating buoy B. 

We use a simple model of a limiting wave to demonstrate that, in deep water, the 
two types of wave motion may differ by as much as 38 %, even in non-breaking waves. 
The second effect, discussed in $3, is the mean surface level itself. It will be shown 
that the mean level determined by Lagrangian methods is actually higher than that 
determined by Eulerian methods, so that significant corrections to some types of 
remote-sensing observations may have to be made. 

A third and important example is that  of the vertical accelerations, which are 
essential to calculating the behaviour of short, centimetric waves riding on the 
surface of longer gravity waves. This question is discussed in $4. 

Lastly we show how the rolling motion of ships may be related to the Lagrangian 
aspect of the flow in steep, irrotational waves. The problem of the orbital, or 
Lagrangian, time for the Stokes 120° corner flow is solved analytically, and a 
numerical computation for the ' almost-highest wave ' is calculated. From these 
solutions it appears that  the passage of a single steep wave may cause a ship's hull 
to roll by angles exceeding 90". The conclusion is supported by model tests with 
cylindrical hulls in a laboratory wave channel ($ 8). The results have clear implications 
for the capsizing of sailing boats, especially those with efficient keels. 

2. The wave period 
Consider the period T of a uniform train of waves of wavelength L advancing with 

speed c ,  as in figure 1 .  As measured a t  a fixed vertical line x = constant, the apparent 
period is the Eulerian wave period 

TE = L / c .  (2.11 

However, when measurements are made with a floating buoy, we must take into 
account the mean horizontal velocity, or ' Stokes drift ', associated with an irrotational 
wave. Let U denote the drift velocity at the free surface. Then the wave period as 
measured by the floating buoy is the Lagrangian period 

TL = L/(c-  U ) ,  (2.2) 

the difference between (2.1) and (2.2) being due to a Doppler shift. The proportional 
difference between (2.1) and (2.2) is 
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FIGURE 2. The pendulum model of a limiting wave in deep water. 

How big is this difference? For low waves, as is well known (Lamb 1932, chap. 9 ) ,  
we have 

U 
- = +(ak)2, (2.4) c 

where 2a denotes the crest-to-trough wave height (figure 1)  and k = 2n /L  is the 
wavenumber. This is a second-order quantity. On the other hand, in waves of limiting 
steepness we may estimate U / c  using a very simple model (Longuet-Higgins 1979a) 
in which the profile of a deep-water wave of limiting height is approximated by the 
arc of a circle; see figure 2. Because the tangent to the surface near a crest makes 
an angle of f 30" with the horizontal, the total arc is 60" and the triangle ABC in figure 
2 is equilateral. Hence the radius AC of the circle is equal to the wavelength AB, that 
is L. Further, the pressure gradient being normal to the free surface, the motion of 
a particle in the surface is the same as that of the bob of a pendulum suspended a t  
the centre C of the circle. This swings from crest B to crest A, then transfers to 
another pendulum beyond A, and so on. The total motion of a surface particle is the 
sum of this backward swing together with the forwards phase speed c of the waves. 
The resulting trajectory, which can be found in terms of an elliptic integral, is shown 
in figure 3 (curve ( 1 ) ) .  This is compared with the trajectory ( 2 )  calculated numerically 
(Longuet-Higgins 19793). 

A simple experiment to verify the theoretical trajectory was carried out as follows. 
I n  a laboratory wave channel, of width 60 cm and total length 40 m, containing 
water of mean depth 35 cm, a small wooden bead, painted white, was floated on the 
water surface at a distance of about 20 m from the wavemaker. This was viewed 
through a window in the side of the tank. A transient steep wave was generated at 
the point of observation by building up a spectrum at that point by the method 
shown in figure 4. The wavemaker generates first the high frequencies, with low group 
velocities. This is followed by waves of successively lower frequencies, with higher 
group velocities. A time exposure of the bead's path was taken (figure 5). This shows 
the beam a t  first nearly stationary. Then, as the waves arrive, the trajectory uncoils 
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FIGURE 3. Trajectory of a particle in the free surface of a limiting deep-water wave : 
(1) pendulum approximation, (2) exact calculation. 
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FIGURE 4. The technique for building up a wave spectrum at a distance x and time t from the 
wavemaker. 

FIGURE 5.  Time exposure of a floating bead near the arrival of a wavefront. 
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FIGURE 6. Sketch of the frequency spectra of wind waves measured simultaneously by Eulerian 
and Lagrangian methods. 

like a watch-spring. As the steep wave passes the fully developed trajectory is seen. 
After passage of the steep wave the bead becomes stationary once more. 

According to the pendulum model (figure 3) the mean speed of advance of a surface 
particle is given by U / c  = 0.282; the accurate value is U/c  = 0.274, a discrepancy 
of less than 3 yo. Now substituting the accurate value into (2.3) we find 

TL-T 
r n  = 0.38, 
I E  

a very considerable difference. 
In a ‘spilling’ breaker, if the accelerometer buoy were carried along with the wave 

like a surf rider, the ratio U / c  could become indefinitely large. In practice, 
accelerometer buoys are usually tethered. Then in a random sea, with groups of high 
waves separated by relatively low waves, the buoy will tend to be carried forward 
most by the high waves, and dragged backwards by the mooring during the intervals 
of lower waves. The resulting frequency spectrum, which is most influenced by the 
high waves, will still have a significant shift towards lower frequencies, compared to 
the Eulerian spectrum (see figure 6), but depending on the characteristics of the 
mooring. 

3. The mean surface level 
Consider the mean elevation of a marked particle in the free surface. A very general 

relation, correct to second order, can be proved for fluid particles undergoing small, 
periodic motions in an inviscid, incompressible and irrotational flow, namely 

where CL and cE are the vertical coordinates of the particle and of the free surface, 
in Lagrangian and Eulerian coordinates, and 

Ar = (u, v)dt s 
is the first-order, horizontal displacement of the fluid, in either system (see Srokosz 
& Longuet-Higgins 1986). A short proof is as follows. To second order, 
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FIGURE 7. Physical interpretation of the difference in mean level as measured by Eulerian and 
Lagrangian methods. 

But 

(3.4) 

and similarly for a[/ay. On substituting in (3.3) we obtain (3.1). 

differentiation of (3.1) with respect to t gives 
This can be related to an earlier result (Longuet-Higgins 1953, section 3). For 

In  the two-dimensional case when v = 0 and (u, w) = (I,+~, -$J this yields 

(3.5) 

say, where the overbar denotes the time-average, and similarly EL = Y,. In  other 
words Y is a stream function for the mass transport (which is therefore non- 
divergent). 

When applied to deep-water waves of amplitude a and wavenumber k, (3.1) yields 

(3.7) 
immediately 5, = 5, ++a%, 

indicating that the Lagrangian-mean surface level is higher than the Eulerian-mean 
level by an amount +za2k. 

A physical interpretation is as follows (see figure 7).  Correct to second order, the 
orbital motion in a deep-water wave is circular, as in a Gerstner wave, but with the 
added horizontal Stokes drift. The angular velocity of particles in the orbit is 
uniform, so that the mean height of the particles is that  of the centre of the circle. 
But the upper and lower points of the circle are at the level of the wave crest and 
the wave trough respectively. Because of the second harmonic in the wave profile, 
which makes the crests sharper and the troughs flatter, the crest and trough are both 
raised, relative to the first harmonic, by an amount just equal to the amplitude of 
the second harmonic. But this is !p2k (see Lamb 1932, chap. 9). Hence the centre of 
the circular orbit is raised by the same amount. 

The formula (3.1) is very general and can be applied to waves with a continuous 
spectrum (see below) and also to subsurface motions. But it is correct only to second 
order. We now prove a very simple relation for uniform, progressive, irrotational 
waves which is exact up to all orders of magnitude, namely 

cu 
5 L - c  - - 1  - 29 

U being the horizontal drift velocity at the free surface. 
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FIGURE 8. Observation of mean level by transmission between a satellite S and the sea surface. 

Take axes moving with the phase-speed c ,  and for convenience choose the origin 
of z at a level such that in Bernoulli's equation 

P ' + h z + g z  = constant 
P 

(3.9) 

the right-hand side is zero. Then a t  the free surface, where p vanishes, we have 

h2+& = 0, (3.10) 

while a t  great depths, where q - f c ,  we have 

p-+ $2 + gz -to. 
P 

(3.11) 

Now since a t  great depths w+O, there is in the limit no vertical flux of momentum 
across the horizontal plane z = constant. So by considering the vertical momentum 
between this plane and the free surface z = 6 we obtain 

(cf. Lamb 1932, p. 420). From the last two equations i t  follows that 

- C2 6 ---. 
29 

E -  (3.13) 

Consider now the Lagrangian-mean level CL. I n  general, the orbital time t satisfies 

(3.14) 

where q is the velocity potential in the moving reference frame. So for the mean level 
we have 

Then using (3.10) we obtain 

From (3.13) and (3.16) i t  follows that 

(3.15) 

(3.16) 

(3.17) 

by (2.1) and (2.2). This proves the result. 
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FIQURE 9. Streamlines and particle accelerations in a Stokes 120" corner flow. 

In  particular, for limiting waves, when c2 = 1.1931 g/k and U / c  = 0.274 (see $2) 

(3.18) 

Such differences may have practical implications for the observation of mean sea 
level from satellites. Suppose, for instance, that  a signal is transmitted from a floating 
buoy B to an overhead satellite and back, as in figure 8. The total elapsed time is 
a measure of the vertical separation between them. But a different answer will be 
obtained if, instead, a transmitter is placed in the satellite and the time is measured 
for reflection back off the sea surface at A .  This difference is, by (3.7), of order 
( ~ k ) ~ L / 4 n ,  where L is the dominant wavelength and a bar denotes the average. For 
a wind-generated wavefield (uk)2 may be as high as 0.012, indicating that the 
difference in mean level is of the order of 1 % of the dominant wavelength. For waves 
of period say 6 s this amounts to about 0.5 m. Such a figure is easily detectable by 
modern instruments, and is significant for the estimation of geostrophic currents. 

In  some applications of remote sensing it is useful to know the moments of the 
distribution of the sea-surface elevation, particularly the third moment, giving the 
coefficient of skewness. The general relation (3.1) can be used to obtain such 
parameters in terms of the two-dimensional spectrum of the surface (see Srokosz & 
Longuet-Higgins 1986). 

we have 
EL - YE = 0.0260L. 

~ 

- 

4. Vertical accelerations 
The surface accelerations in a field of wind-generated waves are of particular 

interest for many reasons. First because of their relation to wave breaking. Phillips 
(1958) argued that if the free surface were to develop a sharp crest, then the 
downwards acceleration a t  that point should be equal to -9, a5 shown experimentally 
by Taylor (1953) in a standing wave of limiting amplitude. However, it  turns out 
that in a progressive wave of limiting amplitude, where the flow near the crest is 
similar to the Stokes 120" corner flow (figure 9) the vector acceleration is everywhere 
?jg directed away from the crest (Longuet-Higgins 1963). I n  an almost-highest wave, 
the downwards acceleration at the crest is only 0.3889 (Longuet-Higgins & Fox 1977; 
Williams 1985). Experimentally, Ochi & Tsai (1983) found that irregular progressive 
waves break at a steepness rather less than that of the limiting steady wave, and a 
limiting value 0.40g has been suggested by Srokosz (1986). 
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FIQURE 10. (a )  Exact profile of a limiting gravity wave on deep water (ak = 0.4432). ( b )  The 
apparent (Eulerian) vertical acceleration corresponding to (a) .  ( e )  The real (Lagrangian) vertical 
acceleration corresponding to (a )  (plotted against the orbital time). 



692 M .  S. Longuet-Higgins 

1 1 I 
I I 
I I 

I 
I 

I 
I 
I I 
I I 
I I I 
I I I 

I 
I 

I I 
I I I 
I I I 
I I I 

I 
I 

I 
I 
I I 
I I I 
I I I 

I I uk = 0.1 I 
I I 
I I I 

I - 

- 1L x = o  ?L 

FIQURE 1 1 .  Surface profiles of gravity waves in deep water, a t  steepnesses ak = 0.1, 0.2, 0.3 and 
0.4. 

In discussing the problem it is clearly necessary to distinguish between Eulerian 
and Lagrangian accelerations. In Eulerian measurements, if the surface elevation at  
a fixed vertical line is denoted by C(t) ,  then in a progressive wave the apparent 
vertical velocity is 5, = -cp1Cx, where c is the phase speed. Similarly the apparent 
vertical acceleration is 

(4.1) a E  = 5tt = C - 2 C z x j  

showing that the acceleration is closely related to the curvature of the free surface. 
For a limiting wave on deep water, this acceleration is shown in figure l O ( b ) .  Over 
nearly all the wave, the surface profile (figure 1Oa) is concave upwards, and so the 
acceleration is positive, with almost constant value 0.229. Near the crest, where the 
curvature is sharply negative, the acceleration is negatively infinite; there is a delta 
function of such a magnitude as to  make the total mean vertical acceleration, 
integrated over one wave period, vanish precisely. The resulting curve is hardly 
sinusoidal. 

The Lagrangian acceleration, on the other hand, is shown in figure lO(c). This can 
be found from the general relation 

where u is the steady fluid velocity in a frame of reference travelling with the phase 
speed. Alternatively we may note that the components of the acceleration tangential 
and normal to the free surface are given by 

aL = u-Vu (4.2) 

q2 as = -g sin p, a, = -, R (4.3) 

where /3 is the angle between the tangent and the horizontal, q is the local particle 
speed (in the moving frame of reference) and R is the radius of curvature of the 
surface. To get the vertical component aL of the real (Lagrangian) acceleration we 
resolve both these components in the upwards direction. Near (but not a t )  the wave 
crest, q is small, R is finite and /3 is 30°, showing that aL equals -b. In the wave 
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trough, on the other hand, sin p vanishes and q2 = 2gH, where H is the wave height. 
The pendulum model ($2) suggests that H = ( 1  - 3412) L, while R = L, giving 

a L  = (2 - 3:) g = 0.2689, (4.4) 

almost equal and opposite to the crest acceleration. From figure 10 (c) it can be seen 
that the Lagrangian acceleration is in fact almost sinusoidal in time. 

The particle accelerations in deep-water gravity waves of arbitrary amplitude have 
been calculated accurately in a recent paper by the author (Longuet-Higgins 1985). 
Surface profiles in the cases ak = 0.1, 0.2, 0.3 and 0.4 are shown in figure 1 1 .  The 
corresponding apparent (Eulerian) accelerations are shown in figure 12, from which 
it is clear that even in the case ak = 0.2 the accelerations are markedly non-sinusoidal. 
When ak = 0.4 (i.e. 10 yo less than the maximum 0.4432) the apparent acceleration 
at  the crest is already - 1.8 g, so that a floating bead constrained to slide on a thin, 
frictionless wire would presumably leave the free surface altogether. 

The real (Lagrangian) accelerations are shown in figure 13. These are much more 
sinusoidal, except that for near-limiting waves there is a singularity, described by 
the theory of the almost-highest wave (Longuet-Higgins & Fox 1977, 1978). Figure 
14 shows the asymptotic form of the free surface, plotted on a lengthscale 

1 = q2/2g, (4.5) 

where q is the particle speed at the wave crest relative to an observer moving with 
the phase speed c. If we define a small parameter E by 

€2 = q”2ci, (4.6) 

where co = ( g / k ) t  is the linear phase speed of the wave, then clearly e2 = kl.  It can 
also be shown that for deep-water waves 

E’ + 2.0 Jak- (ak),,,J (4.7) 

(see Longuet-Higgins & Fox 1978). 

plots indicate an analytic approximation given by 
The crosses in figure 14 indicate the precisely calculated surface profile ; the circular 

where x = 4 + ia,k is the (complex) velocity potential and a,  p, y are suitably chosen 
constants (see Longuet-Higgins 1979~) .  The two curves agree closely. However, the 
analytic approximation is more convenient for calculating the Lagrangian accelera- 
tions, through (4.2). In figure 15 these are shown plotted against the scaled time t/c. 
One can see the transition from the values -0.259 on each side of the wave crest to  
the value -0.3889 at  the crest itself. 

The horizontal component of the Lagrangian acceleration can be appreciable, as 
is seen by considering that a particle a t  the crest of a limiting wave travels with the 
phase speed c ;  the same particle has been accelerated to this forward speed from a 
negative speed in the preceding wave trough, in a little over half a wave period T. 
The acceleration is therefore of order 2c/T, or y/n on linear theory. The accurately 
calculated horizontal accelerations are shown in figure 16. It can be seen that in 
magnitude these actually exceed the vertical accelerations. This implies that a sailor 
in a small boat will be tossed to and fro horizontally as much as vertically. 

The subsurface accelerations are also surprising. From the fact that in the 
almost-highest wave (figure 14) the crest acceleration is less than the acceleration at  
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12. The apparent (Eulerian) accelerations of the free surface in gravity waves of 
steepnesses ak = 0.1, 0.2, 0.3 and 0.4. 

FIQURE 13. The real (Lagrangian) vertical accelerations at the free surface in gravity waves of 
steepnesses ak = 0.1, 0.2, 0.3 and 0.4. 
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FIGURE 14. Surface profile of the crest of an almost-highest wave: (a )  exact calculation; 
( b )  approximate analytic expression. 
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FIGURE 15. Vertical component of the real (Lagrangian) acceleration in an almost-highest 
wave, plotted against the scaled time tie. 
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FIQURE 16. Horizontal component of the real (Lagrangian) acceleration at the surface of 

deep-water waves of steepnesses ak = 0.1, 0.2, 0.3, 0.4 and 0.4432. 

OURE 17. Subsurface accelerations : vertical component of the Lagrangian acceleration vertically 
meath the crest of gravity waves, when ak = 0.1, 0.2, 0.3, 0.40, 0.42 and 0.4432 (broken line). 
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infinity (b), one may infer that in very steep waves the vertical acceleration beneath 
the crest must actually increase with depth, at first. This is confirmed by the accurate 
calculations shown in figure 17. 

One further reason for our interest in surface accelerations is the important 
application to remote sensing of the sea surface. Most of the reflection of electro- 
magnetic radiation from X or L-band radars is due to Bragg scattering by gravity 
or capillary waves of lengths 20 cm or less. The question of how such short waves 
interact with longer gravity waves is thus important for understanding the radar 
imaging of the sea surface. The propagation of the short waves is, however, controlled 
by the effective gravity, hence the orbital accelerations, in the longer waves. Already 
it can be seen from figure 13 that for long waves of steepness ak = 0.40, for example, 
the effective gravity varies from 0.65g at the wave crest to 1.30s in the trough. The 
results of such nonlinearities for the propagation of the short waves have been 
evaluated (Longuet-Higgins 1986), and found to produce changes in the short-wave 
steepness by a factor of 10 or more. This is to be compared with a factor less than 
2 given by linear theory. 

5. Experimental verification 
To measure the Lagrangian accelerations, experiments were conducted in the wave 

channel a t  IOS, Wormley, which is 60 m long, 2 m wide and 2.7 m deep. Waves of 
period 1.20-1.40 s were generated by the wedge-shaped plunger at one end (x = 0) 
in water of mean depth 1.78 m. The waves were observed at a distance x = 36 m from 
the wavemaker, with a small piezo-electric accelerometer contained, together with 
amplifier and power supply, in a flat cylindrical container of diameter 9.6 cm and 
thickness 3.2 cm (see figure 18). The output was brought by thin leads to a standard 
recording millivoltmeter. Calibration was carried out by simply inverting the 
accelerometer so as to measure the difference between -g and g. The voltage output 
was linear up to 39. 

The accelerometer was fixed rigidly in relation to the float and so tended to respond 
to the component of the acceleration normal to the free surface, not the vertical 
component, in general. Hence, the accelerations were noted only at the wave crests 
and wave troughs, where the normal and the vertical components coincide. 

To avoid ‘noise’ from the second and higher harmonics produced by the plunger, 
observations were always made near the front of the wavetrain, which arrived at 
about the theoretical time 2ax/g after starting the wavemaker, as described in 
Longuet-Higgins (1974). For crest accelerations, the largest wave at the head of the 
wavefront was chosen. Its height usually exceeds that of the steady wavetrain behind 
by about 20 yo. For trough accelerations, the two adjacent wave troughs were 
selected, the wave period T being taken as the time interval between the two troughs. 
The wave height 2a was observed visually against a flat vertical scale at  one side of 
the tank. 

Figure 19 shows the results. The horizontal coordinate is the steepness parameter 
ak, where k = (c/c,) k,, the suffix referring to the values for linear waves. Thus 
k, = a2/g where (T = 27c/T. The ratio c/c, was taken from the calculated values in 
table 2 of Longuet-Higgins (1975). The upper and lower curves in figure 19 show the 
trough and crest accelerations respectively. The theoretical values (circular plots) are 
taken from table 1 of Longuet-Higgins (1985). 

Generally the agreement between theory and observation is good, though there is 

23-2 
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FIGURE 18. The floating accelerometer in position in the 60 m wave tank a t  IOS, Wormley. The 
vertical scale is in inches. 
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FIGURE 19. Vertical Lagrangian accelerations at the crest and trough of gravity waves, as a 
function of the wave steepness ak:  -@-, calculated; x , observed. 

increased scatter a t  higher wave steepnesses. We note that the radius of curvature 
R at the crest will become comparable with the diameter d of the float when 

5.158 d - R = -  
ko 

(see Longuet-Higgins & Fox 1977, 1978). Hence 

and i t  is not surprising to  find discrepancies when ak > 0.40. The dynamic response 
of the buoy becomes significant only when its natural period (d/g)? is comparable to 
the timescale lc/q a t  the crest. This occurs only when lalc- (ak)maxl - 0.002. 

That the Eulerian accelerations can easily exceed -g is verified immediately 
from the existence of regular waves with a crest curvature exceeding g/c2, or k 
approximately. However, the first confirmation of such accelerations in wind-waves 
was made from field observations in the Queen Elizabeth I1 reservoir near Staines, 
Middlesex (see figure 20). The waves were recorded by fixed capacitance-wire gauges 
a t  the tower near the south-eastern corner. Winds were usually from the north and 
west. Table 1, taken from a recent paper by Ewing, Longuet-Higgins & Srokosz 
(1986), shows the maximum and minimum apparent accelerations in records of 
1000s duration, a t  different wind speeds. It will be seen that the downwards 
acceleration on one occasion was as great as - 1.69. Further details are given in the 
paper just mentioned. 
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1 km - 
FIGURE 20. Plan of the Q. Elizabeth I1 reservoir near Staines, Middlesex, showing the site of the 

Eulerian wave measurement. 

Starting Wind Wind a * l g  
time speed direction 

Date (EMT) (mls) (deg) min max . 

21 Apr. 1982 1308 3.7 050 -1.11 0.78 
21 July 1982 1343 7.1 020 -0.97 0.68 
22Mar. 1983 1310 12.4 270 - 1.60 0.78 
24Mar. 1983 1229 10.8 000 -1.26 0.73 
16 Apr. 1984 1330 7.0 310 -1.13 0.62 

TABLE 1.  Maximum and minimum Eulerian accelerations in wind waves, measured in the 
Queen Elizabeth I1 reservoir 

6. Angular motion of floating bodies 
The rolling motion of ships is the subject of an extensive literature ; for an excellent 

review see Himeno (1981). Nearly all studies seem to have considered the linear, or 
the nonlinear, response of the ship’s hull to sinusoidal waves. Here we wish to point 
out that  in very steep waves the nonlinearity of the waves themselves is an 
important, perhaps overriding, factor. The form of the steep gravity-wave crest 
introduces new length- and timescales. Moreover, the motion of a ship in such steep 
waves may be more suitably treated from a Lagrangian rather than from a Eulerian 
point of view. 

Consider the rolling motion of a cylindrical body in two-dimensional waves, as in 
figure 21, where the maximum diameter d of the body is small compared to the 
wavelength L. We may distinguish two extreme types of rolling motion. The first 
occurs when the body has strong rolling stability and a relatively short free period 
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FIGURE 21. Types of rolling motion for a floating cylindrical hull: (a )  hydrostatic, ( b )  inertial. 

of roll. It tends then always to align itself in the direction of effective gravity, which 
is normal to the free surface (figure 21a).  We may call this ‘hydrostatic rolling’. 

The second type occurs when the body has very little roll stability, and inertial 
or acceleration forces acting on the keel, as well as tangential frictional forces, compel 
it to respond to velocity gradients in the wave motion (figure 21 b ) .  We may call this 
‘inertial rolling’, and i t  is evident that in this case the angular displacements are 
exactly opposite in sense to those in case (a).  For on a wave crest, for instance, the 
orbital motion beneath the surface is backwards relative to the crest. So if the ‘keel ’ 
follows the particle motion in its vicinity, the body will rotate clockwise. In a wave 
trough, on the other hand, the orbital motion is backwards, and decreases with 
depth, so the body rotates anticlockwise. 

In case ( b )  the orientation of the keel closely follows the position of a nearly 
vertical line of particles at any given orbital time t .  These are indicated in the figure 
for relatively low waves. (It is assumed that the keel starts in a vertical position in 
the wave trough.) 

As the wave steepness is increased, the hydrostatic forces involved in type (a) 
rolling, which will grow roughly linearly with wave steepness, will tend to be 
overtaken by the inertial forces in type ( b )  rolling, which are generally nonlinear. 
Thus for very steep waves, and with an efficient keel, it may happen that type ( b )  
rolling is typical. 
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The question, then, that we wish to investigate, is the determination of the loci 
of constant orbital time near the crests of steep gravity waves. Essentially this will 
constitute a Lagrangian description of the wave motion. 

7. Orbital times for steep waves 

with complex potential x = # + i+ is 
A general formula for the orbital time t of a particle in a steady, irrotational flow 

where q is the local particle speed, and the integral is taken along a streamline 
$ = constant (see Longuet-Higgins 1979b). 

Consider first the Stokes corner flow shown in figure 9. For this flow we have 

x = #+i+ = $g:z$ where z = x+iy = reie (7.2) 

in a frame of reference moving with the wave (x being measured vertically 
downwards). On inversion this gives 

and on substituting in (7 .1 )  

Hence writing 

p = - + -  - -tan$@ 
$ we obtain 

where 

(7.4) 

(7.5) 

(7.7) 

Equation (7.6) expresses the orbital time t as the product of a function of r and a 
function of 0. It is thus a self-similar solution. Hence it is easy to express r as a 
function o f t  and 0, and we find 

the required expression. 
The curves of constant t are shown in figure 22. Near the free surface # = $, when 

p+ CO, we have I @ )  - 3p4 and so r+igt2, as we would expect. Generally from (7.7) 
we have 

where 
I ( p )  = 3p4-A + B ( p ) ,  (7.9) 

A = Jr b--] 1 
dp = 2.239 

(1  +pZ)$ 
and 

(7.10) 

(7 .11)  
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FIGURE 22. Curves of constant orbital time t in a Stokes 120' corner flow. 
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FIGURE 23. Curves of constant orbital time t in an almost-highest wave. 
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FIGURE 24. (a)  Cylindrical model, with keel. (6) Model in low waves: a k  = 0.07. (c) Model in steeper 
waves: a k  = 0.23. (d) Model in very steep waves: a k  = 0.39. 

for large p. Hence when 8+$~, 

(7.12) 

where 8’ = 4%-8. So at the free surface, dr/d8 becomes infinite, and the line of 
particles with t = constant becomes tangential to the free surface. 

As 8+0, on the other hand, we see that y N qt where q is the particle speed on 
the line 0 = 0. From (7.2) i t  follows that y - g i  txi, a parabola. The asymptote when 
t = 1 is shown by the broken line in figure 22. 

Assuming that the keel swings round with the curves of constant t in figure 22, 
we see that the floating body could in theory be turned through an angle of up to 
120’ on passage of the wave crest. 
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FIGURE 25. (a) Modified model hull, with keel and mast. (b) - (g)  Model in very steep waves: 
ak = 0.40. 
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wave, given by (4.5). On substituting for z in the general formula (7.1) we find 
The conclusion is somewhat modified by considering the flow in an almost-highest 

where 
8 = fa-Py, 7 = &. 

(7.13) 

(7.14) 

The corresponding lines of constant t are shown in figure 23. It will be seen that near 
the crest the loci of constant t are no longer tangential to  the free surface, but they 
tend to  become so as r / l  becomes large. The approximation remains valid only so 
long as r / l  is not large compared with 1 / ~  (see Longuet-Higgins & Fox 1978). 

8. Model experiments 
A hollow Perspex tube, of length 50 cm, diameter 5 cm and wall thickness 3 mm, 

was bunged a t  both ends and fitted with a thin aluminium keel of width 12 mm, 
running the length of the cylinder (see figure 24a). To one end was attached a 
black-and-white cardboard disk to indicate the angle of roll. When floating in still 
water the cylinder was half submerged, with a free-roll period of 0.5 s. 

The model was placed across the same channel, 60 cm wide, as described in $ 2 ,  and 
subjected to wavetrains of period about 1.0 s, generated in the same manner. I n  low 
waves of steepness ak = 0.07 (figure 24b) the model tended to  roll with the local wave 
surface, as in figure 21 (a ) .  I n  steeper waves, ak = 0.23, the phase of the roll was 
reversed (figure 24c). On passage of a very steep wave, ak = 0.39, the model was rolled 
through an angle of 60" or more (figure 24d) .  

A similar experiment with the same model, but without the keel, showed only a 
slight angle of roll. 

To simulate an open boat, a similar cylindrical model was prepared, but with 
one-third of the circumference removed, the lost mass being made up by a wooden 
shaft fixed to the axis. To this was attached a very light balsa-wood mast (figure 25a).  
On placing the model in a steep wave it behaved similarly to the circular cylinder. 
Figures 25 (b-g) show the boat rolling through nearly 90", becoming swamped, and 
sinking to  the bottom. 

I n  the above experiments the waves were not breaking. Breaking waves did indeed 
produce even stronger rolling motions, as has been found in other capsizing studies 
(see for example Kirkman, Nagle & Salsich 1983). The significance of the present 
experiments is that  catastrophic rolling may be induced even by non-breaking waves. 
Attention is also drawn to the probable part played in capsizing by an efficient keel. 

The author is indebted to Dr Charles Clayson for constructing the accelerometer 
described in $ 5 ,  and for assistance with the experiments. For an introduction to the 
literature on ship rolling and for useful comments, the author thanks Nick Newman. 
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